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DATA TRANSFOPMATIONS IN REGRESSION ANALYSIS WITH APPLICATIONS TO STOCK - RECR7&r
RELATIONSHIPS

David Ruppert

and

Raymond J. Carroll

Department of Statistics
University of North Carolina
Chapel Hill, NC 27514/USA

Abstract

W*2roccse a 1i) tCj'lr"Cj fur fitcing theorotical models to data. The dependent

variable (or response) and the model are transformed in the same way. Two types of

trarsfermations, [x-wnr trar.rformat'ior and weighting, are us,'e. toxjether to retcve

skewness and to induce constant variance. Oar method is applied to the stock-

recruitment data of four fish stocks. Also discussed are estimates of the

conditional mean and the conditioral quantiles of the original response.

1. Introduction

In regression analysis one seeks to establish a relationship between a response

y and independent variables x - (xI ,... ,xk ) . Often the physical or biological

system generating the data suggest that in the absense of randcm error y = f(x,_)

where f is a known function and 0 is an unknown parameter. In reality random

variability, modeling errors, and measurement errors will cause y to deviate from

f(x,_).

Usually _0 is e~timaLed by the (possitly nonlinear) least-sqvares estimator _

which minimizes

N
(Y. - f( t, j))2

L t -

t=l

where yt and t m (xlt'""" 'Xkt)' are the t-th observations of the response and the

independent variables, t=l,...,N. The method of least squares is not uniquely

determined in the following sense. If h(y) is a monotonic function then y = f(x,0)

implies that h(y) = h(f(x,0)). In the absense of random error, there is an infinity

of possible no:els, one for each h. Teking h(y) to be the new dependent variable

and h(f(x,_)) to be the new regression model, the least-squares estimate (h),
depending ci h, r.dn~nmizes AIR FO'nE OFFCE q,? !CjE-Pj1FTC RE 3ARCH (AFSC)
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N

/ hyt - hff(xt,O)))
tt

This paper addresses the question "how should h be chosen?" In the past h was

often chosen so that the model was linear in the parameters, but with the wide

availability of nonlinear-least squares software linearization is no longer

necessary. Instead h should be selected so that 9(h) has high statistical

efficiency in some sense, say low asymptotic mean square error. For nonlinear

models finite-sarple mean square errors are seldon known and large-sample, or

asymptotic, mean square errors must be used.

Least-squares estimation is asymptotically efficient when the errors are

additive, normally distributed, and hamoscedastic, that is, if

Yt f(xt'-O) + t W)

wtiere e .. N are independent N(Q,>-2 ) random variables for some o-2 > 0. If (1)

fails to hold for the original response and model, it may hold after these have been

transformed. For example, if the errors are riltiplicative and lognormal, then

log(yi) = log(f(2t'-)) + et

so that h(y) = log(y) is the appropriate transformation.

In general, it is impossible to know a priori how the random errors affect y.

It is, however, often reasonable to assume as an approximation that for an unknown h

h(yt) = h(f(xt,9)) + et and et - N(0'(-2

ard then to estimate h fran the data.

Carroll and Ruppert (1984) introduced a methodology where h is assumed to

belong to a parametric class such as the class of power functions. Specifically,

h(y) = h(y,\) where h(y,\) is a known parametric family and X is an unknown

parameter. Then e, o-, and X are estimated simultaneously, for example by maximum

likelihood.

Box and Cox (1964) used a modified power transformation family

= log(y) X=0,

which inol,3des the vlo transforratinn in a natural, i.e., continuoti, fashion. Tt

should be mentioned that Box and Cox were concerned with a quite different

transformation methodology. They transform only the response, not the model; see

Carroll and Ruppert (1984).

A-.
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Another transformation family which, as we will see, is useful in stock-

recruitment analysis is division by (ut) 0 where ut is a known constant and z is an

unknown parameter. Since ut is a constant which does not depend on yt' a

transformation of this kind has no effect on skewness but it induces" h was

homscedasticity if (ut) is the standard deviation of yt" The constant ut can bet t
one of the independent variables, a variable not depending on or yt' or a

function of such variables. Division by (ut) will be called a "power weighting

transformation". Note that denotes ordinary, not Box-Cox, power transformation

of u so that ut =1when x=.
t t
This paper is restricted to a model combining a Box-Cox power transformation

with a power weighting transformation:

(W / u f( W(xt')/ut + . (2)
yt -t t 1

However, the methodology that is developed here can be applied to other

(1) transformation families.

According by model (2, y) is symmetrically distributed about f(x( 0)"•e been Wcodn y mode (2) W
n Therefore, f (2(t,_) gives both the conditional (given x i) mean and median of y .

This implies further that the untransformed model f(xt,8) gives the conditional

median of the untransformed response yt. However, the conditional mean of Yt is not

f ,,) except if 1 = . The conditional mean is discussed below. We see then

that f(xt,_O) has two interpretations; it gives the value of yt if there is no errur,
-t V and otherwise it gives the conditional median of yt".

In our examples, 2t = Xt is the size of a spawning stock St and the response

t is the total return Rt. Ccmrmnly used model functions f(x,O) include the Ricker

(1954) model

Rt = St exp(OI + ( 2 St) , (3)

, and the Beverton-Holt (1957) model

Rt = 1/0 1 + 2st (4)

We will let ut = X Then (3) can be transformed to

Rt/St = exp(Ol + 92 st (5

by letting \=l and x=l. By using X=O and oc-O on (5), one obtains

log(Rt/St) = 91 + 82 St. (6)

see

UN
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Equation (6) is often favored since it is linear in the parameters.

Equation (4) can be linearized to

/Rt = {9 +2 (!St) (7)
t 1 2 't

or

S t/Rt = (2 + 81 St %8)

corresponding to X=-l and cx=O and X-1 and x=-l, respectively.

By estimating X and oc we can tell when these linearizing transformations are

appropriate for a given set of data, and we can find more suitable transformations

when the linearization is not appropriate.

Although we advoce.z. transfon.'ing the response to achieve an error structar,

where least-squares is efficient, often one must estimate characteristics (such as

t*-'-.e c.,rdiiona2 ze!.n) of the riqinai zesponse. In secti.n 5 estirates cf the

conditional mean and tie conditional quantiles of yt given xt are presented.

2. Power transformations, skewness, and heteroscedasticity

In this section, we discuss how power transformations affect, and in particular

remove, skewness and heteroscedasticity. Suppose that the randon variable yt has
2*rean mt and .ariance c- = g(mt ); the sae function g applies for each t. If Yt is

transformed to h(yt), then by a Taylor approximation as in Bartlett (1947), the

variance of h(yt) is

E(h(yt) - E h(yt )}2

E{h(yt) - h(mt)}2

(hmt))2 Eyt mt}2

2
= g(mt)

where h(y) = d/dt h(y). The variance of h(yt) is approximately constant if h(y) is

proportional to g-1(y).

In many cases g is a power function. For example, g(m) = m for Poisson-

distributed data and g(m) is proportion to m2 if the coefficient of variation (CV)

is constant. Also, g(m) = m2 for exponentially distributed data. When

g(m) 0 m 2(l- ) then h(m) z g-_ (m) if h(y) = y(%).- In the case \ 0 (constant

CV), the log transformation stabilizes the variance, and for Poisson data \ 1/2,

the squ.areroot transformation is indicated.

The effect of h on skewness is also revealed by h. Suppose that y is

positively skewed. The extended right tail in the distribution of y is reduced

Nil

LAI,\ W . .
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than small values; more precisely, if for all A > 0, 1h(yl+A) - h(y1 )I < Ih Y2+A)

- h(y2)1 whenever Y > Y2 " Such ampression occurs if h(y) is a decreasing

function, in which case h is called concave.

(7) When h(y) is a Bex-Ccx power transformation then h(y) = (d/dy) \-l(y -l) when

XO or h(y) = (d/dy) log y when =. In either case, h(y) = y- and

(8) consequently h is concave if X < 1. Bcx-Ccx transformations reduce right-skewnes-

when \ < 1 and the amount of reduction increases as X decreases.

Left skewness if reduced by transformations that are convex, that is, which

s are have an increasing derivative. If X > 1, then y(X) is convex.

itions

3. Simultaneous cower transformation and weighting by maximun likelihood.

A1i-hourgh Dowcr transformations c&n redace both skewness and heteroscedasticity,

It-he value of \ inducing normality, or at least a reasonably symmetric distribution,

need rot be the serre \ which transforms to constant ariance. A more flexible

approach to modneling combines a Box-Ccx power transformation to normality %ith a

power weighting transformation to haomscedasticity as in equation (2). In this

section we discuss the estimation of X, a, 9, and o- by maximun likelihood and the

rtic-ular construction of a confidence region for X and (x by likelihood-ratio testing.

has To find the likelihood, we first note that the density of rt is

is
(2'1 c!-2)-1 exp(-- 2 /(2 23-

aa a is -- /u Therefore, the conditional density ofad the Jacobian of t - t isYt ut"

Yt given xt and ut is

f (yt jxt, ut~eF0-, , X)=

(2 ) y - /UcX ) exp(Ey () - f()2 2 2 x

If xt and ut are fixed constants, not depending on y,...,yt_1 , then the log-

) is likelihood of YlI..."YN is

L(, xe, o- 2 ) -N/2 log(2-g o2)

n (CV) N N

+ (K-l) log(yt) - at L log (ut)

' t=l t=l
.712,

N

-(1/2 (3 y()- f(),j)2acL t --

;Crd t=1

" more If xt and ut depend on previous values of y, then L(X,Qt,e,a-2) is still. the

WE- % V%-,%% .,. -
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conditional log-likelihood of y'Y. u given xlX 0,x_l,... and ulu 0,lu1 ... , and

maxLmization of L(,c,Oo- ) should still produce good estimates of \'c'G'o2 The

distinction between conditional and unconditional estimates fram time series data is

discussed in Box and 'Jenkins (1976, Chapter 7). The dependence of xt and ut on past

y may, however, produce biases. Walters (1985) found sizeable biases in a Monte

Carlo study with small sample sizes, N = 10. His study assumed that X was known

and equal to 0. His formulas show that the bias should decrease as N increases.

Following Box and Cox (1964), we maximize L(,ac,9,o- 2) in two stages. First,

for fixed \ and o the MLE of e is the nonlinear, weighted least-squares estimator

"(X,ax) which minimizes

N (y / W 11)1)) 2 2oc
SS (\,cx,9) = \\ Yt fX (=xt'-')

- ? i'e2 /ut

and the MLE of o- is 02(X,c) = N- SS('Ot 9(X,cx, )). Define

Lx(\,cx) = L (X,x, O(,ac), &(\,c))

to be the log-likelihod maximized with respect to 0 and o- for fixed X and 0C. An

S ' d prux..ate MLE is fcurA hy crpiting Lmax(X.-) on a grid; in se.7tion 4 we use

cx = -1(.25)1 and \ = -1(.25)1. If the exact MLE is needed then L max(, ) can be

maximized by a numerical optimization technique using the approximate MLE as an

initial value. However, an exact MLE is probably unnecessary for most applications.

The function Lax(\,cx) can be used to test hypotheses and to construct

confidence regions for (\,cx). For a given null value (X0 , c0 ), one can test H0:

(X,) = (X01 X0 ) against H1: (X, O) Y (XO (X0 ) by the likelihood ratio test. The

log-likelihood ratio is

LR(X O, o 0  L(n , at) - Lax,(o' (X0).

Here (X, cx) is the MLE or approximate MLE. H0 is rejected at level e if
2 LR(\0, Oc0) exceeds X 12(, i-E), the 100(1-e) percentile of the chi-square

distribution with one degree of freedom (Rao, 1973, section 6e). This test can be

applied to each value (X0 1 x0) on the grid, and a 100(1-e) percent confidence
region for (X, at) consists of all null values which are not rejected.

4. Examples

4.1 Population A

These data and the population B data discussed later were obtained through

Professor Carl Walters (pers. comm.). Permission to identify the stocks has been

refused by the original source. There are twenty-eight years of data. The

,I
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and variables, Rt =total return and St =spawner escapement, are plotted in figure 1.

The

Ita is______________________________

Ipast 1

:s11 21OCO

tor-

%lean -Ri cker

*t

An

:in.010000 20000 30000 qfoooo
-ions.Snawners (numbers of fish)

i Fig. 1: Ponulation A. Actual recruitment from 1940 to 1967,

0 estimated median recruitment based on the Ricker and

The Beverton-Holt (BH) models, and estimated mean recruit-

ment based on the Ricker model.

We first fit the (transformed) Ricker modxel:

R S (St exp(O + 92 St)) W/S ( +e(9

i eThe approxiate MLE (on the grid X = -1(.25)1 and cx -1(.25)1) is C\ Xc)

(.25,0) and the mraximized log-likelihood is -338.3106. With (X,ci) equal to the

MLE, modlel (9) beccrx-s

Oonf i-ence regions for (X, Wi are given in Table 1. The 95% univariate coaf id-rice

regions for \and ot are (0,.25,.5) and {-.25,0,.25,.5,.75), respectively.
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Lambda Alpha

-.25 0 .25 .5 .75

+ -4 + +

.25 * ** * *
+ + +-+ + +

+ + + +J~.5

* = 95% confidence region assuming the Ricker model.

* =%1LE assuming the Ricker model.

+ 95% confidence r:gion assuming the Beverton-Holt model.

++ = SE assuming the B&verton-Holt model.

Table 1: Population A. Cenfidence regions and maxim=, likelihood estimates of
lambda and alpha.

Noct the transformed Beverton-Holt model

R( /St =1/(e + S+ G
t t 11 2/ ' ' t +

was fit. The MLE is (X m) = (.25,.25) and the maxii,.um log-likelihood is

-337. 0919. The difference between the maximum log-likelihood for the Beverton-Holt
and Ricker models is only 1.2187 which indicates that both models fit almost as

well, though by this criterion the Beverton-Holt model does provide a slightly

better fit.

The estimated median return, calculated as described in section 5, is plotted

in figure I for both the Ricker and Beverton-Holt models, as is the "smearirg

estimate (section 5) of the mean assuming the Ricker model.
A researcher with only linear regression software might be tempted to linearize

both the Ricker and Beverton-Holt models and then to compare them on their

linearizing scales. When the linearized Ricker nxdel

log(Rt/St) = I1 + e 2 St

is, fit R2 = 0.207 and the F-value for testing overall significance of the model is

6.79 (p = 0.015). If the linearized Beverton-Holt model

l/Rt = el + s
I

is fit then R-2 0.000549, F = 0.01, p = .9058, and if the alternative linearized

St/Rt =2 + e 1 St
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is fit then R2 = 0.110, F = 0.29, and p = .5950. A researcher camparing these

models only on their linearizing scales might easily be tempted into concluding that

the Ricker model provides a far better fit. On the contrary, we believe that the

Beverton-Holt model is very slightly better fitting, but the log transformation is

vastly superior to the inverse transformation.

It is interesting to see how well the LE transformation achieves both

hoscedasticity and near normality. In table 2 the skewness and kurtosis are given

for the three transformed Ricker models:

(I) R!S = exp(81 + 82 S) (\=l, (=I)

(II) log(R) = log(S) + 8i + 82 S (\=0, =O)

Hil.) Iz- = t i + 62 ) /4) (\--.25, x=1h,

that is, no c' tanafcrrati.o, log " .nd the respe-Kivly.

Lan bra Alpha Skewness Kurtosis Spearman

Correlation

! .99 2.69 .39

t 0 0 -1.04 1.22 .12

-s .25 0 -. 27 -.23 .14

Table 2: Population A. Skewness and kurtosis of residuals and Spearman rank

)tted correlation between the absolute residuals and the predicted values. The Ricker

model uas used.

:t rize For model (III) both skewness and kurtosis are closest to 0, their theoretical value

under normality. Also in table 2 are the Spearman rank correlations between the

absolute residuals and the fitted values. Since the fitted values are an increasing

function of S, the rank correlation is unchanged if the fitted values are replaced

by S. Clearly, X=O and X=.25 both transform to near hcmoscedasticity where there

kel is is little or no relationship between the mean and variance of R. However, the MLE
X=.25 is preferable to \=0 since X--0 "overtransforms" to negative skewness.

Normality and homoscedasticity of the residuals can be checked graphically by a

normal plot of the residuals and a plot of the residuals against the fitted values.

The graphical analysis of residuals should be done routinely for transformation

irodels as for ordinary regrcssion irrurels. Draj.__r and Smith (l9;) piovidA_ an

excellent account of graphical residual analysis. We plotted the residuals frao the
MLE and found no evidence of non-normality or heteroscedasticity. A normal

0 "
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probability plot of the residuals is roughly linear, though the very slight negative

skewness (table 2) is evident. For these data, a plot of the residuals versus the
predicted values is not easy to interpret; the Ricker and Beverton-Holt curves are

nearly constant over the observed range of S so the predicted values are quite

similar except for those corresponding to the smallest values of S.

4.2 Skeena River sockeye salmon

For this stock, effective escapement (S) and total rezurn (R) are given for

years 1940 to 1967 in Ricker and Smith (1975). These data are plotted in figure 2

along with t-he estimated medians (section 5) for the Ricker and Beverton-Holt

models. Ccmpared with the Pcpulation A stock, the Skeena River data show less

Sositiv skewn.ess bul more h~terosce3a-icity. Figure 2 nhcws several particularly

Low values of R associated with high values of S but only one particularly high

* . ,val'.. Tais xey indicate cv. iprsatio , or .4 rrey simply be d, ie to te high

variability in R when S is large.

*3000-4

-5 2100 -4A a"
2 Beverton-Holt
-I.800 -

m Ricker

S1200

600

0 400 800 1200
Spawners (thousands of fish)

Fig. 2: Skeena River sockeye. Actual recruitment from
1940 to 1967 and estimated median recruitment
based on Beverton-Holt and Ricker models.

*The 95% confidence regions and the MLE of (X, (x) are the samte for the Ricker
ani PRevertori-Holt models and they are given in table 3. The maximum log-likelihoods

for the Ricker and for the Beverton-Holt models differ by only 0.164, so there is
little to suggest one model over the other. In particular, the data provide no
strong evidence of overcampensation.

d
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ptive Lambda Alpha

the -. 25 0 .25 .5 .75 1
are 0 * *

.25 * * * *

.5 * * * *

.75 * * ** * *
1 * * * *

-e 2 * 95% confidence region.

=** = L

Table 3: Skeena River sockeye salmon stock. 95% confidence region and maxi;nun

likelihood estimate assuming either the Ricker or Beverton-Holt model.

Crtparedi wit . t-he cPulatiol A date, tnv MLE herE results :n loss
transformation A, = .75 instead of = .25 as before) but more weightinc kc = .5

instead of ; = 0 or .25). This is consistent with the observation that the

untransformed Skeena data exhibit little skewness but considerable

heteroscedasticity.

4.3 Pacific Cod, Necate Strait (Walters, et al., 1982)

The twenty-one observations, 1959 to 1979, on this stock are plotted in figure

3 along with predicted medians for two models.

Recruitment is virtually independent of spawning stock except that the two

unusually large recruitments occur when S is rather small. For this reason the

Beverton-Holt model fits poorly. For this stock we will consider the Ricker model

and the power model

Rt - 1S t 2

With Boc-CCx and weighting transformations the power model becomes

W ( e 2 (X) +R t  /St = (01 St ) / St + •t

Confidence regions for (X, (z) are given in table 4. The maximum log-likelihood is

-34.9690 and -37.2541 for the power and Ricker models, respectively, and the large

difference (2.2851) indicates lack-of-fit for the Ricker model.

ILB
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------- - ~e

Spawners (millions of fish)

ri.3: Hecate Stroit Dacific c .\t1:r7et
from 1959 to 1979 and estimated median recruit-
ment based on the Power and Ricker models.

Lamnbda Alpha

-1 -. 75 -. 5 -. 25 0 .25 .5 .75 1

-. 75* * *

-.5 * * *

-. 25 * * * * *

.25* ** * * * *

.75* * * * *

*=95% Confidence region.

ME- I or within .1 of maximizing the log-likelihood.

Table 4. Hecate Strait Pacific cod stock. 95% confidence region and maximum

- F-likelihood estimate assuming the poer model.

&&N -IM 11. YJ ' i..
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We can test the Ricker model as follows. The general model

93
Rt = St 3exp( 1 + a2 St)

includes the Ricker model (083 = 1) and the power model (82 0) as special cases.

One tests the Ricker model by testing H0: 83 = 1 against HI: @3 ? 1. The maxi'u-n

log-likelihood is -34.9022 and the log-likelihood maximized subject to the

constraint 83 = 1 is -37.2541 (see above). Twice the difference is 4.704 which

axceeds X2(1, .95) = 3.84. The Ricker model is reject at level .05. By the same

reasoning the power .model is accepted since 34.9690 - 34.9022 = .0668 is very small.

The 95% confidence region for (X, ax) assuming the Power model is quite large

because (a) there are only 21 data points and, more importantly, (b) the variability

in both spawning stock and return is small -npared to the previously examined

stocks. The confidence region for the Ricker nmrde is even larger, but this is to

be expected considering the lack of fit.

For the power .model, the MLE is (\, c) = (0, .5), but the log-likelihood at

.25 and a = .25 or .5 is within 0.1 of the maximum.

4.4 Poulation B (from Professor Carl Waltes,pers. cam.)

For this stock, Rt and St vary over a much wider range than for the three

preceding stocks, and it seems preferable to use the return to spawner ratio, Rt/St,

as the response. A plot of log (Rt/St) against St is rather linear, but most of the

data are bunched together in the range 0 < St < 300,000 while the remainder are

scattered over 300,000 < St _ 3,300,000, so in figure 4 log (R/S) is plotted against

log (S).

The only model studied here is the transformed Ricker model

(Rt/St)( W / Stx = { (ex1( + 82 St)I( W / StX + et
( tS) tS ex( 1  2 t t t

Also the grid (x = -1(1/4)1 is replaced by a = -1/4(1/16)1/4 because values of cx

far from 0 fit poorly and lead to convergence problems when e1 and 02 are computed.

The 95% confidence region for (X, (x) and the MLE are found in table 5. Clearly,

the confidence region is quite small. Because Rt and St vary over extremely wide

ranges, X and at are well determined by the data.

5. Estimating the Conditional Distribution of y

We have seen how to utilize the model

Y / ui = fe(x 1 , 0) / u + e

to efficiently estimate e. The model expresses a transformed response as a function

V ;
ALL Ii kl, I
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of E,, and the normally (or approximately normally) distributed e.. Typically

interest centers on the untransformed respo~nse yt. In this section it is shown how

to estimate the conditional (given K.i) mean of y. as well as conditional quantiles;

such as the median.

11

Lo (Spwnrs

-2odicti4: ratio Log sSpawners 1repese

it1 logarithms.
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y Landa Alpha

how

es -4/16 -3/16 -2/16 -/16 0 1/16 2/16 3/16 4/16

-. 25

. 25 * * * *

• - in 95% confidence regions

Table 5. Populatien B. 95% coni.:ernc re-,.ion assuming the Ricker model R/S

exp(81 + @2 S).

Now G i cannot be exactly normally distributed in most cases, for example when

Yi and f(x, e) are non-negative and Xj'O. It is better to suppose that e. is nearly

normal but with a bounded range. Fortunately, for present purposes we need not make

any assumption about the {Ei except thaL Lhey are independent and identically

distributed.

Ify = x, then the inverse relationship is y - (I + Xx)'/  if # 0 ad

y = exp(x) if \=0. In what follows we assume that \ 0. If =0, then one

simply replaces (Q + Xx)I/ X by exp(x). Using (2) we can express the original

response yi as a function of xi, ui, Gi and the parameters \,a,e:

Yi {I + X xi, - + W u( ep11M

With this representation we can study the untransformed Yi" Let F be the

distribution function of 9I' ... P PN" The conditional mean of y, given xi is

E(yi 1i) = (I + X f() (x ,  ) + X u ) / XdF(6) . (10)

Let qP be the pth quantile of F, i.e., F(qq) = p. Then the conditional pth quantile

of Yi given xi is

q= (I + Xf cxE,)+ qp .

Duan (1983) has proposed the "smearing estimate" of R(y.!i.):

* - t* - ~ . .i .... - __ * . [ ,
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-whnere G is the t-th residual,

et (X W f (X.x (
t -t-

The relationship between (10) and (11) is clear; all parameters are replaced by

their estimrates and averaging with respect to the theoretical distribution of E.i is

replacing by averaging over the sample Gl, .. , E,.Even if F were known, (9) could

only be evaluated by nu.-rerical integration, but (10) does not require integration.

This is a distinct advant,-ge of the srearing estimate.

Let op Le' the p-t.n Sample quantile of (e 1. Then we estimate q C y. IX. bry

o (yi. ={+ . ., £)+ Xuc

In the case of the miedian (po .5), the residuals should have a median close to 0

and we can replace q.5 by 0. The estimated conditional median is then

m (yi, 2s) = q.5(Yi [xi)

As mentioned before, in figure 1 E(Y141) and m (yj3S) are plotted for Population
A assuming the Ricker mordel, and fiylx) is plotted for the Beverton-Holt model as

well. The mean return is always considerably larger than the median return. This

reflects the considerable positive skewness seen in the actual recruitments and

evident in the MLE of \,\=.25.
Because recruitment is so highly variable any realistic ma~nagement model will

be stochastic, and when a stochastic model is constructed it is vital that the

entire conditional distribuition of R given S t be estimated. This can be done by
estimating conditional quantiles as above. Ruppert, Reish, Deriso, and Carroll

(1985) use a closely related method for estimating conditional quantiles when

constructing a stochastic model of the Atlantic menhaden population. Transformation

of the menhaden stock-recruitment data is discussed further in Carroll and Ruppert

(1984).

Sumr and Conclusion-s

theoretical ntidel relating a response y to indlependent v& ia 9 x and

parameters 0 may not be suitable in its original form for least-squares estimtion

This is the case if the respo~nse exhibits skewness or nonconstant variance.
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However, if the response and the model function are transformed in the same way,
Ui) then the transformed response may be approximately normally distributed with a

nearly constant variance and then least-squares estimation will be efficient.

In this paper we propose combining the Bx-Ccx power transformation with
(wweighting by u t ,where ut is a variable no, depending on y and x is a parameter to

be estimated. Another possibility, one that is not explored here, is to have u be

the predicted value f(x.i, 8). Weighting the untransformed response by If(x., )I
is studied in Bax and Hill (1974), Pritchard, Dcwnie, and Bacon (1977) and Carroll

S -and Ruppert (1982).
* uli The Box-Cox parameter X and the power weighting parameter (x can be estimated

simultrancously with _ and o- by maxLmnum likelihood. A confidence region for (X, ac)

.. c.nstrt. .y 1ik. lihcod--ratio testing.

Four stock-recruitment data sets were analyzed by our transformation

i~ - cc'. T.he o.icgin- rexs.onse, return, is in e sh -.e skewed of:

he eroscedastic. Only for -he Pacific cod stock is \=1 and x=O, corresponding to

no transformation, in the 95% confidence region. On the other hand \--O and x=0,

which is the linearizing transformation for the Ricker model, is in the 95%

confidence region for all four stocks. Also, the inverse transformation (X = -1)

which linearizes the Be.erton-Holt is not in the 95% region for any of the four

stocks. If both the Ricker and Beverton-Holt models are linearized, then the Ricker

axel will dp-ar better fitting, not because iL is necessarily supericr but because

the log transformation is mure suitable than the inverse transformation. There are

examples where \=-l is quite suitable, for example the Atlantic menhaden stock

(Carroll and Ruppert, 1984).

After \ and x have been estimated by maximum likelihood, the fitted model
s should be checked by residual analysis as described in, for example, Draper and

* Smith (1981). Maximum likelihocd estimatiion is highly sensitive to outlying

. observations. Such influential points may be evident from the residuals. Robust

estimators for our transformation model is an important area for future research.

At present, robust estimation has been studied only for the rather different

methodology where only the response, not the model, is transformed; see Carroll and

Ruppert (1985), Carroll (1980), and Bickel and Doksum (1981).

The model function gives the conditional median of the response, and the
:on conditional mean and the other conditional quantiles of the response can be easily

estimated. By estimating conditional quantiles one in effect builds a model of the

skewness and heteroscedasticity in the untransformed response. Such a odel is a

crucial part of a realistic stochastic management model of the stock.

We have used four fish stocks as examples of our proposed statistical

methodology, but our analyses should not be considered definitive. For exa ple, w

did not consider the effects on the Skenna River stock of the 1951-2 rock slide,
changes in exploitation rates, an artifical spawning dannel opened in 1965, or

,:J,

"'"- -'-' a.% % 
'
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interactions between year classes; see Ricker and Smith (1975). We believe,

however, that power and weighting transformations will be equally as useful for more

elaborate models as for the basic ones that we have employed for illustrative

purposes.
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